6月21-22日美国核材料专家应邀来我校材料学院超高温结构复合材料重点实验室交流访问
2016-06-16 10:46  

专家介绍及报告内容

1. Professor.Dr.Steven Zinkle

 


美国工程院院士,原橡树岭国家实验室材料部主任、现田纳西大学教授 (Goveror’s Chair Professor)、白宫核科学顾问、美国能源部劳伦斯奖获得者,世界聚变能材料大会顾问委员会主席,著名的核材料专家Steven John Zinkle.教授。

报告内容:Next Generation Steels for Fission and Fusion Energy Applications

研究方向:

§  Radiation effects in materials

§  Deformation and fracture mechanisms in structural materials

§  Fusion reactor materials

§  Fission reactor materials

§  Materials processing and performance under extreme conditions

§  Microstructure-property relationships

§  Thermal and electrical conductivity of materials

§  Transmission electron microscopy

§  Accident tolerant fuel systems

§  Non-equilibrium and additive manufacturing processes

 

2.Professor.Gary Was

 

密歇根大学核能工程与放射科学学院原院长,教授。Journal of Nuclear Materials主编, 国际材料研究协会MRS、ASM、NACE、美国核能学会ANS会士。美国核能工程组织领导主席,总统青年研究奖、美国工程院杰出研究奖、美国核工业协会材料科学技术分会杰出成就奖和特别成就奖获得者,国际著名核材料专家Gary Was 教授。

报告内容:Accidental Tolerant Fuel(ATF ) materials and the use of ion irradiation in their development

研究方向:

§  Design of Radiation-Tolerant Alloys for Generation IV

§  Developing and Evaluating Candidate Materials for Generation IV

§  SCC of Candidate Alloys for the Supercritical Water Reactor Concept

§  BWRVIP Highly Irradiated Stainless Steel Crack Growth

§  Localized Deformation as a Primary Cause of IASCC

§  Candidate Materials Evaluation for the Supercritical Water Reactor

§  Alloys for 1000C Service in the Next Generation Nuclear Plant

§  Accelerator-Based Irradiation Creep of Pyrolicitc Carbon Used in

TRISO Fuel Particles for the VHTR

 

3Professor Lumin Wang

密歇根大学核能工程与放射科学学院教授,美国核学会国际委员会委员,中国外专局“引进海外高层次文教专家重点支持计划”入选者,

美国密西根大学核工程系杰出教授奖,中国国家杰出青年科学基金(海外)获得者王鲁闽教授。

报告内容: Microstructure evolution of candidate materials during irradiation and its potential impact on ATF performance

研究方向: 辐照效应与辐照损伤,核废料处置,电子微束表征,核工程材料相关性质

相关报告简介:

反应堆主要结构材料仍然以钢材为主,希望学院老师未来能拓展和开发新的研究方向 – 李晓强

Steven 教授的报告介绍如下:

Next Generation Steels for Fission and Fusion Energy Applications

Steven J. Zinkle, University of Tennessee, Knoxville, TN 37996 USA

Abstract

Advances in structural alloy development have been historically impeded by lack of thermodynamic phase equilibria information (only about 10% of prospective ternary phase diagrams have been experimentally studied to sufficient accuracy). However, recent improvements in the phase equilibria databases associated with computational thermodynamics evaluations now allow reasonably accurate predictions of phase formation to be rapidly made in numerous alloy systems. This and other breakthroughs are enabling development of new high performance steels and other structural alloys for a variety of energy applications. Advanced next-generation high performance steels offer the opportunity for improvements in operational lifetime and reliability, superior neutron radiation damage resistance, and higher thermodynamic efficiency for fission and proposed fusion reactors. The two main strategies for developing improved steels are based on 1) an evolutionary pathway using computational thermodynamics modelling and modified thermomechanical treatments (TMT) to produce higher performance steels and 2) a higher risk, potentially higher payoff approach based on powder metallurgy techniques to produce very high strength oxide dispersion strengthened (ODS) steels capable of operation to very high temperatures and with potentially very high resistance to neutron-induced property degradation. The first approach can be broadly applied to many types of steel, including austenitic, bainitic and ferritic/martensitic steels. The second approach is particularly relevant to improve the high temperature creep strength of ferritic/martensitic steels for extreme environments. The current development status of these next-generation high performance steels is summarized, and research and development challenges for the successful development of these materials are outlined. Material properties including temperature-dependent tensile and thermal creep, Charpy impact ductile to brittle transient temperature (DBTT) and fracture toughness behavior, and neutron irradiation effects are described for research heats of the new steels.

以上报告会

时间:2016年6月21日9:30

地点:公字楼328会议室

欢迎广大师生届时参加

 

关闭窗口
友情链接:

CopyRight (c)   2016-2017   通讯地址:陕西省西安市友谊西路127号西北工业大学材料学院 邮编:710072 版权所有:西北工业大学材料学院 技术支持:赵有国